

ABSTRACT
Over the past decade software a
an important subfield of softwar
time there has been considerable
technological and methodologic
tectural design as an engineering
cialized architectural description
techniques, handbooks, and meth
the main features of the field, a
architecture with object-oriented
of the important similarities an
two fields.

Keywords
Software architecture, software
ing, object-oriented systems

1 INTRODUCTION
A critical issue in the design an
software systems is software a
tem’s organization as a collect
nents. A well-designed architect
system will satisfy its key requ
respect to system-wide propert
reliability, portability, scalabilit
badly-designed architecture can b

Over the past decade software
increasing attention as an impo
engineering. Practitioners have
an architecture right is a critica
sign and development. They ha
importance of making explicit
leveraging past architectural des
new products. There are now nu
tural design, regular conference
specifically to software architec
commercial tools to aid in aspe
courses in software architectur
industrial research projects cent
In Proceedings of the IPSJ Object-Oriented Symposium 2000
August 2000, Tokyo, Japan.
Software Architecture
and Object-Oriented Systems

David Garlan

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

(412) 268-5056
garlan@cs.cmu.edu

rchitecture has emerged as
e engineering. During that
 progress in developing the
al base for treating archi-
 discipline, including spe-
 languages, tools, analytic
ods. In this paper I survey
nd then compare software
 systems to illustrate some
d differences between the

design, software engineer-

d construction of complex
rchitecture: that is, a sys-
ion of interacting compo-
ure can help ensure that a
irements, particularly with
ies, such as performance,
y, and interoperability. A
e disastrous.

 architecture has received
rtant subfield of software

come to realize that getting
l for successful system de-
ve begun to recognize the
architectural choices, and
igns in the development of
merous books on architec-
s and workshops devoted
ture, a growing number of
cts of architectural design,
e, major government and
ered on software architec-

ture, and an increasing number of formal architectural stan-
dards. Codification of architectural principles, methods,
and practices has begun to lead to repeatable processes of
architectural design, criteria for making principled tradeoffs
among architectures, and standards for documenting, re-
viewing, and implementing architectures.

In parallel, object-oriented systems have come of age. Ob-
ject-oriented programming languages, methods, tools,
modeling notations, and handbooks are now common in
industry. Component-based systems, adopting a distinct
object-oriented flavor, are revolutionizing our ability to
compose systems from parts. Object development methods
are becoming de rigueur in many parts of the software in-
dustry.

An interesting question concerns the relationship between
the two fields. Is software architecture merely a subfield of
object-oriented design? Or vice versa? How should the two
disciplines co-exist? And, most importantly, what kinds of
synergies will best empower practitioners to build complex
systems more effectively.

In this paper I begin by examining some of the important
developments of software architecture in both research and
practice. First I describe the roles of architecture in soft-
ware systems development. Next I summarize the past and
current state of research and practice. I then compare soft-
ware architecture with object-oriented systems to illustrate
some of the important similarities and differences between
the two fields, and suggest possibilities for future interplay
between these areas.

2 THE ROLES OF SOFTWARE ARCHITECTURE
There are numerous definitions of software architecture.
However, at the core of all of them is the notion that the
architecture of a system defines its gross structure. This
structure illuminates the top level design decisions, include-
ing things such as how the system is composed of interact-
ing parts, where are the main pathways of interaction, and

what are the key properties of the parts. Additionally, an
architectural description often includes sufficient informa-
tion to allow high-level analysis and critical appraisal of the
system design.

Software architecture typically plays a key role as a bridge
between requirements and implementation (see Figure 1).

By providing an abstrac
tecture exposes certain p
ally this representation
guide to the overall sy
about the ability of a sys
and suggests a blueprint
position. For example, a
ing application might be
in which the nodes read
that data, and write to o
this decomposition, toge
data flows, computation
reason about possible b
and schedulability of the

To elaborate, software a
in at least five aspects
helps understanding: so
ability to comprehend la
a level of abstraction at
can be easily understood
use: architectural design
ponents, as well as fram
be integrated [8, 31]. T
architectural description
development by indicati
pendencies between the
software architecture c
which a system is expe
analysis: architectural d
ties for checking system
tency [2, 25], conforma
architectural style [1], ac

dependence analysis [42, 45, and domain-specific proper-
ties of architectures built in specific styles [10, 15, 26].

3 EVOLUTION OF THE FIELD
Until recently architectural design and documentation was
largely an ad hoc affair.1 Descriptions relied on informal
box-and-line diagrams, which were rarely maintained once
a system was constructed. Architectural choices were
made in idiosyncratic fashion – typically by adapting some
previous design, whether or not it was appropriate. Good
architects – even if they were classified as such within their
organizations – learned their craft by hard experience in
particular domains, and were unable to teach others what
they knew. It was usually impossible to analyze an archi-
tectural description for consistency or to infer non-trivial
properties about it. There was no way to check that a sys-
tem implementation faithfully represented its architectural
design.

Figure 1: Softwar

Requirements

Software Architecture
 Code

t description of a system, the archi-
roperties, while hiding others. Ide-
provides an intellectually tractable
stem, permits designers to reason
tem to satisfy certain requirements,
 for system construction and com-
n architecture for a signal process-
 constructed as a dataflow network
 input streams of data, transform

utput streams. Designers might use
ther with estimated values for input
 costs, and buffering capacities, to
ottlenecks, resource requirements,
 computations.

rchitecture plays an important role
of software development. First, it
ftware architecture simplifies our
rge systems by presenting them at
which a system's high-level design
 [20, 35]. Second, it supports re-
 supports both reuse of large com-
eworks into which components can
hird, it supports construction: An
 provides a partial blueprint for
ng the major components and de-
m. Fourth, it supports evolution:
an expose the dimensions along
cted to evolve. Fifth, it supports
escriptions provide new opportuni-
 properties, such as system consis-
nce to constraints imposed by an
hievement of quality attributes [9],

Despite their informality, architectural descriptions have
long been central to successful system design. As people
began to understand the critical role that architectural de-
sign plays in determining system success, they also began
to recognize the need for a more disciplined approach.
Early authors began to observe certain unifying principles
in architectural design [36], to call out architecture as a
field in need of attention [35], and to establish a working
vocabulary for software architects [20]. Tool vendors be-
gan thinking about explicit support for architectural design.
Language designers began to consider notations for archi-
tectural representation [30].

Within industry, two trends highlighted the importance of
architecture. First was the recognition of a shared reper-
toire of methods, techniques, patterns and idioms for struc-
turing complex software systems. For example, the box-
and-line-diagrams and explanatory prose that typically ac-
company a high-level system description often refer to such
organizations as a "pipeline,'' a "blackboard-oriented de-
sign,'' or a "client-server system.'' Although these terms
were rarely assigned precise definitions, they permitted
designers to describe complex systems using abstractions
that make the overall system intelligible. Moreover, they
provided significant semantic content about the kinds of
properties of concern, the expected paths of evolution, the
overall computational paradigm, and the relationship be-
tween this system and other similar systems.

The second trend was to exploit commonalities in specific
domains to provide reusable frameworks for product fami-

1 There were some notable exceptions: Parnas recognized
the importance of system families [33], and architectural
decomposition principles based on information hiding [34].
Others, such as Dijkstra, exposed various system structur-
ing principles [12].

e Architecture as a Bridge

lies. Such exploitation is based on the idea that common
aspects of a collection of related systems can be extracted
so that each new system can be built at relatively low cost
by "instantiating'' the shared design. Familiar examples
include the standard decomposition of a compiler (which
permits undergraduates to construct a new compiler in a
semester), standardized communication protocols (which
allow vendors to interoperate by providing services at dif-
ferent layers of abstraction), fourth-generation languages
(which exploit the common patterns of business informa-
tion processing), and user interface toolkits and frameworks
(which provide both a reusable framework for developing
interfaces and sets of reusable components, such as menus
and dialogue boxes).

Over the past decade much has changed. While there re-
mains wide variation in the state of the practice, architec-
ture is much more visible as an important and explicit de-
sign activity in software development. Job titles now rou-
tinely reflect the role of software architect; companies rely
on architectural design reviews as critical staging points;
and architects recognize the importance of making explicit
tradeoffs within the architectural design space.

In addition, the technological basis for architectural design
has improved dramatically. Three of the important ad-
vancements have been the development of architecture de-
scription languages and tools, the emergence of product
line engineering and architectural standards, and the codifi-
cation and dissemination of architectural design expertise.

4.1 Architecture Description Languages and Tools
The informality of most box-and-line depictions of archi-
tectural designs leads to a number of problems: The in-
tended meaning of the design may not be clear. Informal
diagrams usually cannot be analyzed for consistency, com-
pleteness, or correctness. Architectural constraints assumed
in the initial design are not enforced as a system evolves.
There are few tools to help architectural designers with
their tasks.

In response to these problems researchers in industry and
academia have proposed a number of formal notations for
representing and analyzing architectural designs. Com-
monly referred to as "Architecture Description Languages''
(ADLs), these notations provide both a conceptual frame-
work and a concrete syntax for characterizing software
architectures [9, 30]. They also typically provide tools for
parsing, displaying, compiling, analyzing, or simulating
architectural descriptions.

Examples of ADLs include Adage [10], Aesop [15], C2
[28], Darwin [26], Rapide [25], SADL [32], UniCon [39],
Meta-H [6], and Wright [3]. While all of these languages
are concerned with architectural design, each provides cer-
tain distinctive capabilities: Adage supports the description

of architectural frameworks for avionics navigation and
guidance; Aesop supports the use of architectural styles; C2
supports the description of user interface systems using an
event-based style; Darwin supports the analysis of distrib-
uted message-passing systems; Meta-H provides guidance
for designers of real-time avionics control software; Rapide
allows architectural designs to be simulated, and has tools
for analyzing the results of those simulations; SADL pro-
vides a formal basis for architectural refinement; UniCon
has a high-level compiler for architectural designs that sup-
ports a mixture of heterogeneous component and connector
types; Wright supports the formal specification and analy-
sis of interactions between architectural components.

Recently the proliferation of capabilities of ADLs has
prompted an investigation of ways to integrate the notations
and tools into larger ensembles. One of the results has been
an architectural interchange language, called Acme, which
provides a simple framework for describing architectural
structure and a flexible annotation mechanism for adding
semantics to that structure [18]. (Acme can be viewed as
the XML of architectural description.) Acme also supports
the definition of styles and enforcement of design con-
straints through its tools.

Although these languages (and their tools) differ in many
respects, a number of key insights have emerged through
their development. In particular, it is becoming clear that in
its most general form, architectural design requires the abil-
ity to model the following as first class design entities:

�� Components: Architecture is about compositions
of systems from components. Components can be
quite diverse and complex: databases, clients,
servers, entire user interfaces, blackboards, etc.

�� Connectors: In addition to components, architec-
tural design requires the ability to define new
forms of component interactions. Such interac-
tions go beyond simple procedure call, permitting
description of complex forms of communication
as new component integration mechanisms.

�� Styles: An architectural style defines a design vo-
cabulary and specifies a set of constraints on how
that vocabulary can be used. Styles allow the ar-
chitect to specialize the design task to specific
domains or products, and provide improved
opportunities for system analysis.

�� Representations: Architectural descriptions are
typically hierarchical. It must be possible to asso-
ciate more detailed representations (or models)
with the individual parts of an architecture.

�� Visualizations: Different architectural design do-
mains require different visual conventions.

�� Extra-functional properties: To support analysis
of system properties it must be possible to model
key properties of the parts of an architecture, and
determine from those parts the overall properties

of the system. Typical properties include perform-
ance, reliability, and modifiability.

4.2 Product Lines and Standards
As noted earlier, one of the important trends in industry has
been the desire to exploit commonality across multiple
products. Two specific manifestations of that trend are im-
provements in our ability to create product lines within an
organization and the emergence of cross-vendor integration
standards.

With respect to product lines, a key challenge is that a
product line approach requires different methods of devel-
opment. In a single-product approach the architecture must
be evaluated with respect to the requirements of that prod-
uct alone. Moreover, single products can be built independ-
ently, each with a different architecture.

With a product line approach, in contrast, one must also
consider requirements for the family of systems, and the
relationship between those requirements and the ones asso-
ciated with each particular instance. Figure 3 illustrates
this relationship. In particular, there must be an up-front
(and on-going) investment in developing a reusable archi-
tecture that can be instantiated for each product. Other re-
usable assets, such as components, test suites, tools, etc.,
typically accompany this.

Although product line engineering is not yet widespread,
we are beginning to have a better understanding of the pro-
cesses, economics, and artifacts required to achieve the
benefits of a product line approach. A number of case stud-
ies of product line successes have been published. (For
example, see [13].) Moreover, organizations such as the
Software Engineering Institute are well on their way to-
wards providing concrete guidelines and processes for the
use of a product line approach [37].

Like product line approaches, cross-vendor integration
standards require architectural frameworks that permit a
system developer to configure a wide variety of specific
systems by instantiating that framework. Integration stan-

dards typically provide the system glue (both conceptually
and through run time infrastructure) that supports integra-
tion of parts provided by multiple vendors. Such standards
may be formal international standards (such as those spon-
sored by IEEE or ISO), or ad hoc and de facto standards
promoted by an industrial leader.

A good example of the former is the High Level Architec-
ture (HLA) for Distributed Simulation [4]. This architec-
ture permits the integration of simulations produced by
many vendors. It prescribes interface standards defining
services to coordinate the behavior of multiple semi-
independent simulations. In addition, the standard pre-
scribes requirements on the simulation components that
indicate what capabilities they must have, and what con-
straints they must observe on the use of shared services.

An example of an ad hoc standard is Sun's Enterprise Java-
BeansTM (EJB) architecture [27]. EJB is intended to sup-
port distributed, Java-based, enterprise-level applications,
such as business information management systems. Among
other things, it prescribes an architecture that defines a
vendor-neutral interface to information services, including
transactions, persistence, and security. It thereby supports
component-based implementations of business processing
software that can be easily retargeted to different imple-
mentations of those underlying services.

4.3 Codification and Dissemination
One early impediment was the lack of a shared body of
knowledge about architectures and techniques for develop-
ing good ones. Today the situation has improved, due in
part to the publication of books on architectural design [5,
8, 22, 36, 40] and courses [21].

A common theme in these books and courses is the use of
standard architectural styles. As noted earlier, an architec-
tural style typically specifies a design vocabulary, con-
straints on how that vocabulary is used, and semantic as-
sumptions about that vocabulary. For example, a pipe-and-
filter style might specify vocabulary in which the process-
ing components are data transformers (filters), and the in-
teractions are via order-preserving streams (pipes). Con-
straints might include the prohibition of cycles. Semantic
assumptions might include the fact that pipes preserve or-
der and that filters are invoked non-deterministically.

Other common styles include blackboard architectures,
client-server architectures, event-based architectures, and
object-based architectures. Each style is appropriate for
certain purposes, but not for others. For example, a pipe-
and-filter style would likely be appropriate for a signal
processing application, but not for an application in which
there is a significant requirement for concurrent access to
shared data [38]. Moreover, each style is typically associ-
ated with a set of associated analyses. For example, it

Figure 2: Product Line Architectures

Product
Architecture

Product
Requirements

Product Line
Requirements

Product Line
Architecture

induced
 constraint

makes sense to analyze a pipe-and-filter system for system
latencies, whereas transaction rates would be a more ap-
propriate analysis for a repository-oriented style.

The identification and documentation of such styles (as
well as their more domain-specific variants) enables others
to adopt previous architectural patterns as a starting point.
In that respect, the architectural community has paralleled
other communities in recognizing the value of established,
well-documented patterns, such as those found in [14].

While recognizing the value of stylistic uniformity, realities
of software construction often force one to compose sys-
tems from parts that were not architected in a uniform fash-
ion. For example, one might combine a database from one
vendor, with middleware from another, and a user interface
from a third. In such cases the parts do not always work
well together – in large measure because they make con-
flicting assumptions about the environments in which they
were designed to work [16]. This has led to recognition of
the need to identify architectural strategies for bridging
mismatches. Although, we are far from having well under-
stood ways of detecting such mismatch, and of repairing it
when it is discovered, a number of techniques have been
developed [11].

4 OBJECT-ORIENTED SYSTEMS
Of course, software architecture is not the only sub-field of
software engineering in which dramatic changes in lan-
guages, technology, and software practice have taken place.
Object-oriented systems are area that has had even more
impact on industrial practice over the past decade.

There are a number of obvious parallels between the evolu-
tion of object-oriented design techniques and the trends of
software architecture, outlined above.
�� Description Languages and Tools: Object-oriented

systems have long had design languages and tools to
support their use. Recently UML has emerged as a
standard notation, unifying many of its predecessors.
Increasingly vendors are developing tools that take ad-
vantage of this technological standardization.

�� Product Lines and Standards: Object-oriented
frameworks have long been an important point of lev-
erage in system development. In particular, compo-
nent-oriented integration mechanisms, such as Corba,
COM, JavaBeans have played an important role in
supporting integration of object-oriented parts. In other
more domain-specific ways, frameworks like Enter-
prise JavaBeansTM, VisualBasicTM, and MFCTM, have
helped improve productivity in specific areas.

�� Codification and Dissemination: There has been
considerable work and interest in object-oriented
patterns, which serve to codify common solutions to
implementation problems.

Perhaps more importantly, object-oriented design tech-
niques have always attempted to provide a clear path from
requirements to implementation. To the extent that they
support conceptual design of systems, they also address
architectural concerns.

Given these similarities it is worth asking the question:
what are the important differences between the two fields?
There are some who might argue that architecture is simply
a part of object-oriented development. Others might argue
the opposite: that object-oriented design is simply a special
form of architectural design. The answer to this question
obviously has implications about the utility of object mod-
eling notations for architectural design.

To shed light on the issue, I believe it is helps to view the
relationship between architecture and object-oriented de-
sign from at least three distinct perspectives.

1. OO as an architectural style: This perspective treats

the part of object-oriented development that is con-
cerned with system structure as the special case of ar-
chitectural design in which the components are objects
and the connectors are procedure calls (method invoca-
tion). Some ADLs support this view, providing built-in
primitives for inter-component procedure call.

2. OO as an implementation base: This perspective treats
object-oriented development as a lower-level activity,
more concerned with implementation. Viewed this
way, object modeling becomes one viable implementa-
tion target for any architectural design.

3. OO as an architectural modeling notation: This per-
spective treats a notation such as UML as a suitable
notation for all architectural descriptions. Proponents
of this perspective have advocated various ways of us-
ing object modeling, including class diagrams, collabo-
ration diagrams, and package diagrams [44]. From this
perspective, architecture is viewed as a sub-activity of
object-oriented design.

Which of these is most accurate? I believe that all are rea-
sonable interpretations, although in each case there are
mismatches. For the first perspective, there are many as-
pects of object-oriented design that are not captured well by
ADLs. For the second perspective, it is clear that not all
object-oriented modeling is related to implementation. For
the third perspective, there are aspects of architectural de-
sign that are currently not handled well in notations such as
UML. (See [44] for a discussion of some of these.)

Another way to understand the relationship is to ask what
lessons each discipline can offer the other.

Lessons from Architecture:
1. Object-oriented interfaces are not sufficient. Most

ADLs take the view that the interface descriptions of a

component should contain much more information
than a list of provided procedures. In particular, one
must also identify the aspects of the environment that
the component depends on.

2. Quality attributes are central. Most ADLs support
description and analysis of extra-functional properties
such as performance and reliability. For architectural
design such properties are as important (if not more so)
than what is being computed.

3. Connectors need not be procedure calls. Most ADLs
support a higher level notion of interaction than a set
of procedure calls. As argued earlier, the ability to de-
fine new abstractions for system composition is key to
providing higher-level views of system structure.

Lessons from Object-oriented Systems:
1. Linkage to code is essential. Many ADLs provide only

high-level models, without any ways to relate those
models to source code. The success of OO tools has
shown that such linkages are important to preserve the
integrity of the architectural design as the system
evolves over time.

2. Many views are needed. Object modeling notations
support multiple views. Such views are important be-
cause different aspects of a system (e.g., behavior ver-
sus structure) have different requirements for descrip-
tion.

3. Methods must accompany notations. Object-oriented
systems design has long advocated specific develop-
ment methods. Software architecture could learn much
by adapting some of those methods to architecture-
based design.

4. Standards can foster community cohesion. The object-
oriented community has come together around UML as
a standard notation. The architecture community is
currently much less cohesive, leading to a proliferation
of notations and approaches.

Problems that both disciplines share: Both software ar-
chitecture and object-oriented systems design share a num-
ber of technical challenges. These define potential areas in
which synergy may take place in the next few years.

�� Patterns: Both need better support for description and

use of patterns. It is not clear yet how best to describe
the dimensions of variability in patterns, or how to
automate checks for conformance to patterns.

�� Views: Given a multi-view approach one would ideally
like tools to check for consistency between the views
of a system description.

�� Dynamism: Modern systems evolve structurally during
runtime. It is not clear how one should specify or ana-
lyze that dynamism using design models of a system.

�� Analysis: Although considerable progress has been
made in architectural analysis techniques, there re-
mains much to be done to provide engineers with gen-

eral, easy-to-use analysis techniques in areas like secu-
rity, performance, and reliability.

5 CONCLUSION
The field of software architecture is one that has experi-
enced considerable growth over the past decade, and it
promises to continue that growth for the foreseeable future.
Much of that grown has centered on areas of description
and analysis, product-line development, and codification of
architectural wisdom.

The parallel development of object notations and methods
raises some interesting questions about the relationships
between the two areas. While it may be tempting to try to
reduce the problems of one area to those of another, in the
end there remain numerous differences between the two
approaches. These suggest useful lessons and possible areas
of future synergy.

ACKNOWLEDGEMENTS
I would like to thank past and present members of the
ABLE Research Group, Bob Balzer, Barry Boehm, Paul
Clements, Dewayne Perry, John Salasin, Bran Selic, Mary
Shaw, Dave Wile, and Alex Wolf for their help over the
past years in clarifying the nature of software architecture
and its relationship to object-oriented systems. Research
contributing to this paper was sponsored by DARPA under
contracts F30602-97-2-0031, F30602-96-1-0299, F30602-
96-2-0224, and F33615-93-1-1330; by NSF under contracts
CCR-9109469, CCR-9633532, and CCR-9357792; and by
industrial support from HP, Siemens Corporation, and Ko-
dak Corporation.

Mary Shaw provided some of the ideas and text for the
section on pervasive computing architectures. The section
describing the roles of software architecture was adapted
from an introductory article on software architecture co-
authored with Dewayne Perry [19].

REFERENCES
1. G. Abowd, R. Allen, and D. Garlan. Using style to

understand descriptions of software architecture. In
Proceedings of SIGSOFT'93: Foundations of Software
Engineering. ACM Press, December 1993.

2. R. Allen and D. Garlan. Formalizing architectural

connection. In Proceeding of the 16th International
Conference on Software Engineering, pages 71-80.
Sorrento, Italy, May 1994.

3. R. Allen and D. Garlan. A formal basis for architec-

tural connection. ACM Transactions on Software En-
gineering and Methodology, July 1997.

4. S. Bachinsky, L. Mellon, G. Tarbox, and R. Fujimoto.
RTI 2.0 architecture. In Proceedings of the 1998
Spring Simulation Interoperability Workshop, 1998.

5. L. Bass, P. Clements and R. Kazman. Software Archi-

tecture in Practice. Addison Wesley, 1099, ISBN 0-
201-19930-0.

6. P. Binns and S. Vestal. Formal real-time architecture

specification and analysis. 10th IEEE Workshop on
Real-Time Operating Systems and Software, May
1993.

7. B. Boehm, P. Bose, E. Horowitz and M. J. Lee. Soft-

ware requirements negotiation and renegotiation aids:
A theory-W based spiral approach. In Proc of the 17th
International Conference on Software Engineering,
1994.

8. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad

and M. Stal. Pattern Oriented Software Architecture:
A System of Patterns. John Wiley & Sons, 1996.

9. P. Clements, L. Bass, R. Kazman and G. Abowd. Pre-

dicting software quality by architecture-level evalua-
tion. In Proceedings of the Fifth International Confer-
ence on Software Quality, Austin, Texas, Oct, 1995.

10. L. Coglianese and R. Szymanski, DSSA-ADAGE: An

Environment for Architecture-based Avionics Devel-
opment. In Proceedings of AGARD'93, May 1993.

11. R. Deline. Resolving Packaging Mismatch. PhD the-

sis, Carnegie Mellon University, December 1999.

12. E. W. Dijkstra. The structure of the "THE" – multi-

programming system. Communications of the ACM,
11(5):341-346, 1968.

13. P. Donohoe, editor. Software Architecture: TC2 First

Working IFIP Conference on Software Architecture
(WICSA1). Kluwer Academic Publishers, 1999.

14. E. Gamma, R. Helm, R. Johnson and J. Vlissides. De-

sign Patterns: Elements of Reusable Object-Oriented
Design. Addison-Wesley, 1995.

15. D. Garlan, R. Allen and J. Ockerbloom. Exploiting

style in architectural design environments. In Proc of
SIGSOFT'94: The second ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages
170-185. ACM Press, December 1994.

16. D. Garlan, R. Allen and J. Ockerbloom. Architectural

mismatch: Why reuse is so hard. IEEE Software,
12(6):17-28, November 1995.

17. D. Garlan, A. J. Kompanek and P. Pinto. Reconciling

the needs of architectural description with object-
modeling notations. Technical report, Carnegie Mel-
lon University, December 1999.

18. D. Garlan, R. T. Monroe and D. Wile. Acme: An ar-

chitecture description interchange language. In Pro-
ceedings of CASCON'97, pages 169-183, Ontario,
Canada, November 1997.

19. D. Garlan and D. Perry. Introduction to the special

issue on software architecture. IEEE Transactions on
Software Engineering, 21(4), April 1995.

20. D. Garlan and M. Shaw. An Introduction to software

architecture. In Advances in Software Engineering and
Knowledge Engineering, pages 1-39, Singapore, 1993.
World Scientific Publishing Company.

21. D. Garlan, M. Shaw, C. Okasaki, C. Scott, and R.

Swonger. Experience with a course on architectures
for software systems. In Proceedings of the Sixth SEI
Conference on Software Engineering Education.
Springer Verlag, LNCS 376, October 1992.

22. C. Hofmeister, R. Nord and D. Soni. Applied Software

Architecture. Addison Wesley, 2000.

23. C. Hofmeister, R. L. Nord and D. Soni. Describing

software architecture with UML. In Proceedings of
the First Working IFIP Conference on Software Archi-
tecture (WICSA1), San Antonio, TX, February 1999.

24. P. B. Kruchten. The 4+1 view model of architecture.

IEEE Software, pages 42-50, November 1995.

25. D. C. Luckham, L. M. Augustin, J. J. Kenny, J. Veera,

D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, 21(4): 336-355, April 1995.

26. J. Magee, N. Dulay, S. Eisenbach and J. Kramer.

Specifying distributed software architectures. In Pro-
ceedings of the Fifth European Software Engineering
Conference, ESEC'95, September 1995.

27. V. Matena and M. Hapner. Enterprise JavaBeans™.

Sun Microsystems Inc., Palo Alto, California, 1998.

28. N. Medvidovic, P. Oreizy, J. E. Robbins and R. N.
Taylor. Using object-oriented typing to support archi-
tectural design in the C2 style. In SIGSOFT'96: Pro-
ceedings of the 4th ACM Symposium on the Founda-
tions of Software Engineering. ACM Press. Oct 1996.

29. N. Medvidovic and D. S. Rosenblum. Assessing the
suitability of a standard design method for modeling
software architectures. In Proceedings of the First
Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, TX, February 1999.

30. N. Medvidovic and R. N. Taylor. Architecture de-

scription languages. In Software Engineering
ESEC/FSE'97, Lecture Notes in Computer Science,
Vol. 1301, Zurich, Switzerland, Sept 1997. Springer.

31. E. Mettala and M. H. Graham. The domain-specific

software architecture program. Technical Report
CMU/SEI-92-SR-9. Carnegie Mellon Univ., Jun 1992.

32. M. Moriconi, X. Qian and R. Riemenschneider. Cor-

rect architecture refinement. IEEE Transactions on
Software Engineering, Special Issue on Software Ar-
chitecture, 21(4):356-372, April 1995.

33. D. L. Parnas. Designing software for ease of extension

and contraction. IEEE Transactions on Software En-
gineering, 5:128-138, March 1979.

34. D. L. Parnas, P. C. Clements and D. M. Weiss. The

modular structure of complex systems. IEEE Transac-
tions on Software Engineering. SE-11(3):259-266,
March 1985.

35. D. E. Perry and A. L. Wolf. Foundations for the study

of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52, October 1992.

36. E. Rechtin. Systems architecting: Creating and Build-

ing Complex Systems. Prentice Hall, 1991.

37. CMU Software Engineering Institute Product Line

Program. http://www.sei.cmu.edu/activities/plp/, 1999.

38. M. Shaw and P. Clements. A field guide to boxology:

Preliminary classification of architectural styles for
software systems. In Proceedings of COMPSAC 1997,
August 1997.

39. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.

Young and G. Zelesnick. Abstractions for software ar-
chitecture and tools to support them. IEEE Trans on
Software Engineering. 21(4):314-335. April 1995.

40. M. Shaw and D. Garlan. Software Architecture: Per-

spectives on an Emerging Discipline. Prentice Hall,
1996.

41. Mary Shaw. Architectural Requirements for Comput-

ing with Coalitions of Resources. 1st Working IFIP
Conf. on Software Architecture, Feb 1999

http://www.cs.cmu.edu/~Vit/paper_abstracts/Shaw-
Coalitions.html.

42. J. A. Stafford, D. J. Richardson, A. L. Wolf. Aladdin:

A Tool for Architecture-Level Dependence Analysis of
Software. University of Colorado at Boulder, Techni-
cal Report CU-CS-858-98, April, 1998.

43. C. Szyperski. Component Software: Beyond Object-

Oriented Programming. Addison-Wesley, 1998.

44. D. Garlan, A. Kompanek, P. Pinto: Reconciling the

Needs of Architectural Description with Object-
Modeling Notations. Proceedings of UML 2000, Octo-
ber 2000, York UK.

45. J. Zhao, Using Dependence Analysis to Support Soft-

ware Architecture Understanding. In M. Li (Ed.),
"New Technologies on Computer Software," pp.135-
142, International Academic Publishers, September
1997.

http://www.sei.cmu.edu/activities/plp/

	ABSTRACT
	Keywords

	INTRODUCTION
	THE ROLES OF SOFTWARE ARCHITECTURE
	EVOLUTION OF THE FIELD
	OBJECT-ORIENTED SYSTEMS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

