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dards. Codification of architectural principles, methods, 
and practices has begun to lead to repeatable processes of 
architectural design, criteria for making principled tradeoffs 
among architectures, and standards for documenting, re-
viewing, and implementing architectures.  
 
In parallel, object-oriented systems have come of age. Ob-
ject-oriented programming languages, methods, tools, 
modeling notations, and handbooks are now common in 
industry. Component-based systems, adopting a distinct 
object-oriented flavor, are revolutionizing our ability to 
compose systems from parts. Object development methods 
are becoming de rigueur in many parts of the software in-
dustry. 
 
An interesting question concerns the relationship between 
the two fields. Is software architecture merely a subfield of 
object-oriented design? Or vice versa? How should the two 
disciplines co-exist? And, most importantly, what kinds of 
synergies will best empower practitioners to build complex 
systems more effectively. 
 
In this paper I begin by examining some of the important 
developments of software architecture in both research and 
practice. First I describe the roles of architecture in soft-
ware systems development. Next I summarize the past and 
current state of research and practice. I then compare soft-
ware architecture with object-oriented systems to illustrate 
some of the important similarities and differences between 
the two fields, and suggest possibilities for future interplay 
between these areas. 
 
2 THE ROLES OF SOFTWARE ARCHITECTURE  
There are numerous definitions of software architecture. 
However, at the core of all of them is the notion that the 
architecture of a system defines its gross structure.  This 
structure illuminates the top level design decisions, include-
ing things such as how the system is composed of interact-
ing parts, where are the main pathways of interaction, and 



 

what are the key properties of the parts.  Additionally, an 
architectural description often includes sufficient informa-
tion to allow high-level analysis and critical appraisal of the 
system design. 
 
Software architecture typically plays a key role as a bridge 
between requirements and implementation (see Figure 1).  
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3 EVOLUTION OF THE FIELD  
Until recently architectural design and documentation was 
largely an ad hoc affair.1  Descriptions relied on informal 
box-and-line diagrams, which were rarely maintained once 
a system was constructed.  Architectural choices were 
made in idiosyncratic fashion – typically by adapting some 
previous design, whether or not it was appropriate.  Good 
architects – even if they were classified as such within their 
organizations – learned their craft by hard experience in 
particular domains, and were unable to teach others what 
they knew. It was usually impossible to analyze an archi-
tectural description for consistency or to infer non-trivial 
properties about it.  There was no way to check that a sys-
tem implementation faithfully represented its architectural 
design.  
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Despite their informality, architectural descriptions have 
long been central to successful system design.  As people 
began to understand the critical role that architectural de-
sign plays in determining system success, they also began 
to recognize the need for a more disciplined approach.  
Early authors began to observe certain unifying principles 
in architectural design [36], to call out architecture as a 
field in need of attention [35], and to establish a working 
vocabulary for software architects [20].  Tool vendors be-
gan thinking about explicit support for architectural design.  
Language designers began to consider notations for archi-
tectural representation [30]. 
 
Within industry, two trends highlighted the importance of 
architecture.  First was the recognition of a shared reper-
toire of methods, techniques, patterns and idioms for struc-
turing complex software systems. For example, the box-
and-line-diagrams and explanatory prose that typically ac-
company a high-level system description often refer to such 
organizations as a "pipeline,'' a "blackboard-oriented de-
sign,'' or a "client-server system.''  Although these terms 
were rarely assigned precise definitions, they permitted 
designers to describe complex systems using abstractions 
that make the overall system intelligible. Moreover, they 
provided significant semantic content about the kinds of 
properties of concern, the expected paths of evolution, the 
overall computational paradigm, and the relationship be-
tween this system and other similar systems. 
 
The second trend was to exploit commonalities in specific 
domains to provide reusable frameworks for product fami-
                                                           
1 There were some notable exceptions: Parnas recognized 
the importance of system families [33], and architectural 
decomposition principles based on information hiding [34]. 
Others, such as Dijkstra, exposed various system structur-
ing principles [12]. 
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lies. Such exploitation is based on the idea that common 
aspects of a collection of related systems can be extracted 
so that each new system can be built at relatively low cost 
by "instantiating'' the shared design. Familiar examples 
include the standard decomposition of a compiler (which 
permits undergraduates to construct a new compiler in a 
semester), standardized communication protocols (which 
allow vendors to interoperate by providing services at dif-
ferent layers of abstraction), fourth-generation languages 
(which exploit the common patterns of business informa-
tion processing), and user interface toolkits and frameworks 
(which provide both a reusable framework for developing 
interfaces and sets of reusable components, such as menus 
and dialogue boxes). 
 
Over the past decade much has changed. While there re-
mains wide variation in the state of the practice, architec-
ture is much more visible as an important and explicit de-
sign activity in software development. Job titles now rou-
tinely reflect the role of software architect; companies rely 
on architectural design reviews as critical staging points; 
and architects recognize the importance of making explicit 
tradeoffs within the architectural design space. 
 
In addition, the technological basis for architectural design 
has improved dramatically. Three of the important ad-
vancements have been the development of architecture de-
scription languages and tools, the emergence of product 
line engineering and architectural standards, and the codifi-
cation and dissemination of architectural design expertise. 
 
4.1  Architecture Description Languages and Tools 
The informality of most box-and-line depictions of archi-
tectural designs leads to a number of problems:  The in-
tended meaning of the design may not be clear.  Informal 
diagrams usually cannot be analyzed for consistency, com-
pleteness, or correctness. Architectural constraints assumed 
in the initial design are not enforced as a system evolves. 
There are few tools to help architectural designers with 
their tasks. 
 
In response to these problems researchers in industry and 
academia have proposed a number of formal notations for 
representing and analyzing architectural designs. Com-
monly referred to as "Architecture Description Languages'' 
(ADLs), these notations provide both a conceptual frame-
work and a concrete syntax for characterizing software 
architectures [9, 30].  They also typically provide tools for 
parsing, displaying, compiling, analyzing, or simulating 
architectural descriptions.   
 
Examples of ADLs include Adage [10], Aesop [15], C2 
[28], Darwin [26], Rapide [25], SADL [32], UniCon [39], 
Meta-H [6], and Wright [3].  While all of these languages 
are concerned with architectural design, each provides cer-
tain distinctive capabilities: Adage supports the description 

of architectural frameworks for avionics navigation and 
guidance; Aesop supports the use of architectural styles; C2 
supports the description of user interface systems using an 
event-based style; Darwin supports the analysis of distrib-
uted message-passing systems; Meta-H provides guidance 
for designers of real-time avionics control software; Rapide 
allows architectural designs to be simulated, and has tools 
for analyzing the results of those simulations; SADL pro-
vides a formal basis for architectural refinement; UniCon 
has a high-level compiler for architectural designs that sup-
ports a mixture of heterogeneous component and connector 
types; Wright supports the formal specification and analy-
sis of interactions between architectural components. 
 
Recently the proliferation of capabilities of ADLs has 
prompted an investigation of ways to integrate the notations 
and tools into larger ensembles. One of the results has been 
an architectural interchange language, called Acme, which 
provides a simple framework for describing architectural 
structure and a flexible annotation mechanism for adding 
semantics to that structure [18]. (Acme can be viewed as 
the XML of architectural description.) Acme also supports 
the definition of styles and enforcement of design con-
straints through its tools.  
 
Although these languages (and their tools) differ in many 
respects, a number of key insights have emerged through 
their development. In particular, it is becoming clear that in 
its most general form, architectural design requires the abil-
ity to model the following as first class design entities: 

�� Components: Architecture is about compositions 
of systems from components. Components can be 
quite diverse and complex: databases, clients, 
servers, entire user interfaces, blackboards, etc. 

�� Connectors: In addition to components, architec-
tural design requires the ability to define new 
forms of component interactions. Such interac-
tions go beyond simple procedure call, permitting 
description of complex forms of communication 
as new component integration mechanisms. 

�� Styles: An architectural style defines a design vo-
cabulary and specifies a set of constraints on how 
that vocabulary can be used. Styles allow the ar-
chitect to specialize the design task to specific 
domains or products, and provide improved 
opportunities for system analysis. 

�� Representations: Architectural descriptions are 
typically hierarchical. It must be possible to asso-
ciate more detailed representations (or models) 
with the individual parts of an architecture. 

�� Visualizations: Different architectural design do-
mains require different visual conventions. 

�� Extra-functional properties: To support analysis 
of system properties it must be possible to model 
key properties of the parts of an architecture, and 
determine from those parts the overall properties 



  

of the system. Typical properties include perform-
ance, reliability, and modifiability. 

 
4.2  Product Lines and Standards  
As noted earlier, one of the important trends in industry has 
been the desire to exploit commonality across multiple 
products. Two specific manifestations of that trend are im-
provements in our ability to create product lines within an 
organization and the emergence of cross-vendor integration 
standards. 
 
With respect to product lines, a key challenge is that a 
product line approach requires different methods of devel-
opment. In a single-product approach the architecture must 
be evaluated with respect to the requirements of that prod-
uct alone. Moreover, single products can be built independ-
ently, each with a different architecture. 
 
With a product line approach, in contrast, one must also 
consider requirements for the family of systems, and the 
relationship between those requirements and the ones asso-
ciated with each particular instance.  Figure 3 illustrates 
this relationship. In particular, there must be an up-front 
(and on-going) investment in developing a reusable archi-
tecture that can be instantiated for each product. Other re-
usable assets, such as components, test suites, tools, etc., 
typically accompany this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although product line engineering is not yet widespread, 
we are beginning to have a better understanding of the pro-
cesses, economics, and artifacts required to achieve the 
benefits of a product line approach. A number of case stud-
ies of product line successes have been published. (For 
example, see [13].)  Moreover, organizations such as the 
Software Engineering Institute are well on their way to-
wards providing concrete guidelines and processes for the 
use of a product line approach [37]. 
 
Like product line approaches, cross-vendor integration 
standards require architectural frameworks that permit a 
system developer to configure a wide variety of specific 
systems by instantiating that framework. Integration stan-

dards typically provide the system glue (both conceptually 
and through run time infrastructure) that supports integra-
tion of parts provided by multiple vendors.  Such standards 
may be formal international standards (such as those spon-
sored by IEEE or ISO), or ad hoc and de facto standards 
promoted by an industrial leader. 
 
A good example of the former is the High Level Architec-
ture (HLA) for Distributed Simulation [4].  This architec-
ture permits the integration of simulations produced by 
many vendors. It prescribes interface standards defining 
services to coordinate the behavior of multiple semi-
independent simulations. In addition, the standard pre-
scribes requirements on the simulation components that 
indicate what capabilities they must have, and what con-
straints they must observe on the use of shared services. 
 
An example of an ad hoc standard is Sun's Enterprise Java-
BeansTM  (EJB) architecture [27].  EJB is intended to sup-
port distributed, Java-based, enterprise-level applications, 
such as business information management systems. Among 
other things, it prescribes an architecture that defines a 
vendor-neutral interface to information services, including 
transactions, persistence, and security.  It thereby supports 
component-based implementations of business processing 
software that can be easily retargeted to different imple-
mentations of those underlying services. 
 
4.3  Codification and Dissemination 
One early impediment was the lack of a shared body of 
knowledge about architectures and techniques for develop-
ing good ones. Today the situation has improved, due in 
part to the publication of books on architectural design [5, 
8, 22, 36, 40] and courses [21]. 
 
A common theme in these books and courses is the use of 
standard architectural styles. As noted earlier, an architec-
tural style typically specifies a design vocabulary, con-
straints on how that vocabulary is used, and semantic as-
sumptions about that vocabulary. For example, a pipe-and-
filter style might specify vocabulary in which the process-
ing components are data transformers (filters), and the in-
teractions are via order-preserving streams (pipes). Con-
straints might include the prohibition of cycles. Semantic 
assumptions might include the fact that pipes preserve or-
der and that filters are invoked non-deterministically. 
 
Other common styles include blackboard architectures, 
client-server architectures, event-based architectures, and 
object-based architectures. Each style is appropriate for 
certain purposes, but not for others. For example, a pipe-
and-filter style would likely be appropriate for a signal 
processing application, but not for an application in which 
there is a significant requirement for concurrent access to 
shared data [38]. Moreover, each style is typically associ-
ated with a set of associated analyses. For example, it 
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makes sense to analyze a pipe-and-filter system for system 
latencies, whereas transaction rates would be a more ap-
propriate analysis for a repository-oriented style. 
 
The identification and documentation of such styles (as 
well as their more domain-specific variants) enables others 
to adopt previous architectural patterns as a starting point. 
In that respect, the architectural community has paralleled 
other communities in recognizing the value of established, 
well-documented patterns, such as those found in [14]. 
 
While recognizing the value of stylistic uniformity, realities 
of software construction often force one to compose sys-
tems from parts that were not architected in a uniform fash-
ion. For example, one might combine a database from one 
vendor, with middleware from another, and a user interface 
from a third.  In such cases the parts do not always work 
well together – in large measure because they make con-
flicting assumptions about the environments in which they 
were designed to work [16]. This has led to recognition of 
the need to identify architectural strategies for bridging 
mismatches.  Although, we are far from having well under-
stood ways of detecting such mismatch, and of repairing it 
when it is discovered, a number of techniques have been 
developed [11].  
 
4 OBJECT-ORIENTED SYSTEMS 
Of course, software architecture is not the only sub-field of 
software engineering in which dramatic changes in lan-
guages, technology, and software practice have taken place. 
Object-oriented systems are area that has had even more 
impact on industrial practice over the past decade.  
 
There are a number of obvious parallels between the evolu-
tion of object-oriented design techniques and the trends of 
software architecture, outlined above. 
�� Description Languages and Tools: Object-oriented 

systems have long had design languages and tools to 
support their use. Recently UML has emerged as a 
standard notation, unifying many of its predecessors. 
Increasingly vendors are developing tools that take ad-
vantage of this technological standardization. 

�� Product Lines and Standards: Object-oriented 
frameworks have long been an important point of lev-
erage in system development. In particular, compo-
nent-oriented integration mechanisms, such as Corba, 
COM, JavaBeans have played an important role in 
supporting integration of object-oriented parts. In other 
more domain-specific ways, frameworks like Enter-
prise JavaBeansTM, VisualBasicTM, and MFCTM, have 
helped improve productivity in specific areas. 

�� Codification and Dissemination: There has been 
considerable work and interest in object-oriented 
patterns, which serve to codify common solutions to 
implementation problems. 

 

Perhaps more importantly, object-oriented design tech-
niques have always attempted to provide a clear path from 
requirements to implementation. To the extent that they 
support conceptual design of systems, they also address 
architectural concerns. 
 
Given these similarities it is worth asking the question: 
what are the important differences between the two fields? 
There are some who might argue that architecture is simply 
a part of object-oriented development. Others might argue 
the opposite: that object-oriented design is simply a special 
form of architectural design. The answer to this question 
obviously has implications about the utility of object mod-
eling notations for architectural design. 
 
To shed light on the issue, I believe it is helps to view the 
relationship between architecture and object-oriented de-
sign from at least three distinct perspectives.  
 
1. OO as an architectural style: This perspective treats 

the part of object-oriented development that is con-
cerned with system structure as the special case of ar-
chitectural design in which the components are objects 
and the connectors are procedure calls (method invoca-
tion). Some ADLs support this view, providing built-in 
primitives for inter-component procedure call. 

2. OO as an implementation base: This perspective treats 
object-oriented development as a lower-level activity, 
more concerned with implementation. Viewed this 
way, object modeling becomes one viable implementa-
tion target for any architectural design. 

3. OO as an architectural modeling notation: This per-
spective treats a notation such as UML as a suitable 
notation for all architectural descriptions. Proponents 
of this perspective have advocated various ways of us-
ing object modeling, including class diagrams, collabo-
ration diagrams, and package diagrams [44]. From this 
perspective, architecture is viewed as a sub-activity of 
object-oriented design. 
 

Which of these is most accurate? I believe that all are rea-
sonable interpretations, although in each case there are 
mismatches. For the first perspective, there are many as-
pects of object-oriented design that are not captured well by 
ADLs. For the second perspective, it is clear that not all 
object-oriented modeling is related to implementation. For 
the third perspective, there are aspects of architectural de-
sign that are currently not handled well in notations such as 
UML. (See [44] for a discussion of some of these.) 
 
Another way to understand the relationship is to ask what 
lessons each discipline can offer the other. 
 
Lessons from Architecture: 
1. Object-oriented interfaces are not sufficient. Most 

ADLs take the view that the interface descriptions of a 



  

component should contain much more information 
than a list of provided procedures. In particular, one 
must also identify the aspects of the environment that 
the component depends on. 

2. Quality attributes are central. Most ADLs support 
description and analysis of extra-functional properties 
such as performance and reliability. For architectural 
design such properties are as important (if not more so) 
than what is being computed. 

3. Connectors need not be procedure calls. Most ADLs 
support a higher level notion of interaction than a set 
of procedure calls. As argued earlier, the ability to de-
fine new abstractions for system composition is key to 
providing higher-level views of system structure. 

 
Lessons from Object-oriented Systems: 
1. Linkage to code is essential. Many ADLs provide only 

high-level models, without any ways to relate those 
models to source code. The success of OO tools has 
shown that such linkages are important to preserve the 
integrity of the architectural design as the system 
evolves over time. 

2. Many views are needed. Object modeling notations 
support multiple views.  Such views are important be-
cause different aspects of a system (e.g., behavior ver-
sus structure) have different requirements for descrip-
tion. 

3. Methods must accompany notations. Object-oriented 
systems design has long advocated specific develop-
ment methods. Software architecture could learn much 
by adapting some of those methods to architecture-
based design. 

4. Standards can foster community cohesion. The object-
oriented community has come together around UML as 
a standard notation. The architecture community is 
currently much less cohesive, leading to a proliferation 
of notations and approaches. 

 
Problems that both disciplines share: Both software ar-
chitecture and object-oriented systems design share a num-
ber of technical challenges. These define potential areas in 
which synergy may take place in the next few years. 
 
�� Patterns: Both need better support for description and 

use of patterns. It is not clear yet how best to describe 
the dimensions of variability in patterns, or how to 
automate checks for conformance to patterns. 

�� Views: Given a multi-view approach one would ideally 
like tools to check for consistency between the views 
of a system description. 

�� Dynamism: Modern systems evolve structurally during 
runtime. It is not clear how one should specify or ana-
lyze that dynamism using design models of a system. 

�� Analysis: Although considerable progress has been 
made in architectural analysis techniques, there re-
mains much to be done to provide engineers with gen-

eral, easy-to-use analysis techniques in areas like secu-
rity, performance, and reliability. 

 
5 CONCLUSION 
The field of software architecture is one that has experi-
enced considerable growth over the past decade, and it 
promises to continue that growth for the foreseeable future.  
Much of that grown has centered on areas of description 
and analysis, product-line development, and codification of 
architectural wisdom. 
 
The parallel development of object notations and methods 
raises some interesting questions about the relationships 
between the two areas. While it may be tempting to try to 
reduce the problems of one area to those of another, in the 
end there remain numerous differences between the two 
approaches. These suggest useful lessons and possible areas 
of future synergy. 
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